Topics in the November 2013 Exam Paper for CHEM1002

Click on the links for resources on each topic.

2013-N-2:

- Crystal Structures
- Metal Complexes
- Coordination Chemistry
- Kinetics

2013-N-3:

• Weak Acids and Bases

2013-N-4:

- Weak Acids and Bases
- Calculations Involving pKa

2013-N-5:

- Strong Acids and Bases
- Solubility Equilibrium

2013-N-6:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams

2013-N-7:

- Alkenes
- Alcohols
- Organic Halogen Compounds
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2013-N-8:

• Stereochemistry

2013-N-9:

- Representations of Molecular Structure
- Alkenes
- Alcohols

2013-N-10:

• Carboxylic Acids and Derivatives

2013-N-11:

- Synthetic Strategies
- Stereochemistry

2202(a)

THE UNIVERSITY OF SYDNEY <u>FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002</u>

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2013

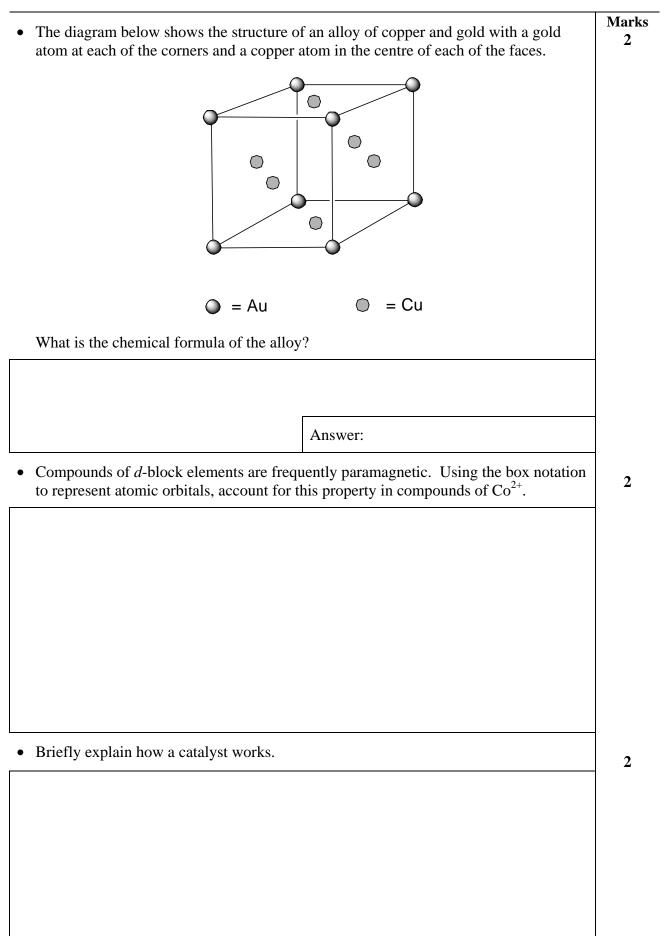
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 17 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 12 and 20 are for rough working only.


OFFICIAL USE ONLY

Multiple choice section

\backslash		Marks
Pages	Max	Gained
2-8	28	

Short answer section

		Marks		
Page	Max	Gained		Marker
9	6			
10	7			
11	7			
13	8			
14	9			
15	11			
16	7			
17	8			
18	3			
19	6			
Total	72			
Check	Total			

Marks • The structures of the drugs aspirin and amphetamine are shown below. 7 (a) Draw the conjugate base of aspirin and the conjugate acid of amphetamine. (b) *Circle* the form of each that will be present in a highly acidic environment. O^{\prime} ΟH aspirin conjugate base of aspirin NH_2 conjugate acid of amphetamine amphetamine Ions are less likely to cross cell membranes than uncharged molecules. One of the drugs above is absorbed in the acid environment of the stomach and the other is absorbed in the basic environment of the intestine. Identify which is absorbed in each environment below and briefly explain your answers. Drug absorbed in the stomach: aspirin / amphetamine Drug absorbed in the intestine: aspirin / amphetamine

THIS QUESTION CONTINUES ON THE NEXT PAGE.

Calculate the pH of a 0.010 M solution or is 3.5 at this temperature.	f aspirin at 25 °C. The p K_a of aspirin	Marl 7
	pH =	
Aspirin, $C_9H_8O_4$ is not very soluble. "So aspirin with sodium hydroxide. Write the		
Is a solution of "soluble aspirin" acidic o	r basic? Briefly explain your answer.	

Marks

8

• The concentration of iron in the ocean is one of the primary factors limiting the growth rates of some basic life forms. Write the chemical equation for the dissolution reaction of $Fe(OH)_3$ in water.

What is the solubility of Fe(OH)₃ in mol L⁻¹? K_{sp} (Fe(OH)₃) is 2.8 × 10⁻³⁹ at 25 °C.

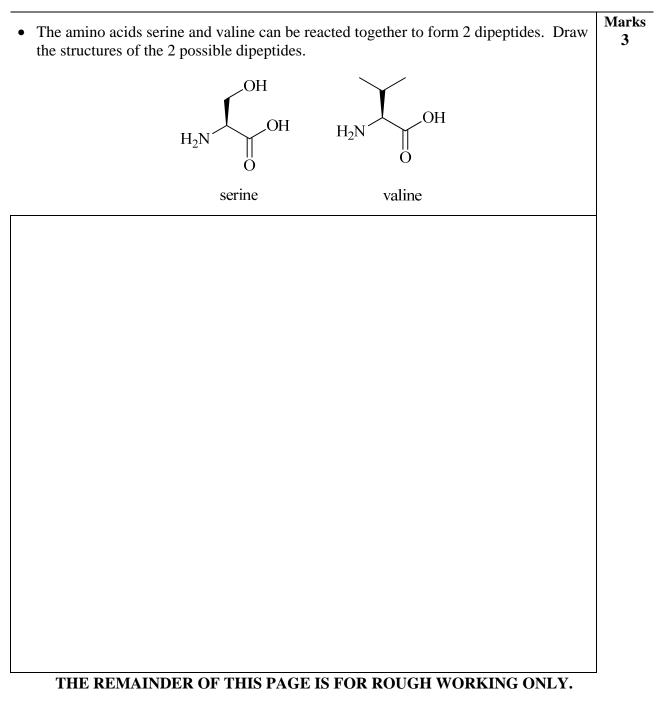
Answer:

Before the Industrial Revolution, the concentration of $OH^{-}(aq)$ in the oceans was about 1.6×10^{-6} M. What pH corresponds to this concentration at 25 °C?

Answer:

What is the solubility of $Fe(OH)_3$ in mol L^{-1} at this pH?

Answer:


Industrialisation has led to an increase in atmospheric CO_2 . Predict the effect that this has had on the amount of $Fe^{3+}(aq)$ in sea water and briefly explain your answer.

Marks • Solid sulfur can exist in two forms, rhombic sulfur and monoclinic sulfur. A portion 9 of the phase diagram for sulfur is reproduced schematically below. Complete the diagram by adding the labels "vapour" and "liquid" to the appropriate regions. monoclinic 153 °C, 1420 atm sulfur 1041 °C, 204 atm Pressure (atm) rhombic sulfur 115.18 °C, 3.2×10^{-5} atm 95.31 °C, 5.1×10^{-6} atm Temperature (°C) Which form of solid sulfur is stable at 25 °C and 1 atm? Describe what happens when sulfur at 25 °C is slowly heated to 200 °C at a constant pressure of 1 atm. How many triple points are there in the phase diagram? What phases are in equilibrium at each of the triple points? Which solid form of sulfur is more dense? Explain your reasoning.

• Complete the following table. Make sure you give the name of the starting material where indicated.								
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)						
	HBr / CCl4 (solvent)							
Name:			_					
OH	NaOH							
CH ₂ Br	KCN / ethanol (solvent)							
O H		ОН						
Name:								
O Cl	excess (CH ₃) ₂ NH							
	hot 3 M NaOH							
Br								

Marks • Methylphenidate, also known as Ritalin, is a psychostimulant drug approved for the 7 treatment of attention-deficit disorder. Identify all stereogenic (chiral) centres in methylphenidate by clearly marking each with an asterisk (*) on the structure below. methylphenidate CO₂CH₃ NH Using a stereogenic centre you have identified, draw the (R)-configuration of that centre. Η How many stereoisomers are there of methylphenidate? Describe the relationships between these isomers. Ritalin is generally sold as the hydrochloride salt, formed when methylphenidate is treated with dilute hydrochloric acid. Draw the structure of this salt and suggest why this is the preferred compound for sale.

 The structure of (-)-linalool, a commonly occurring natural product, is shown below of the structure of (-)-linalool? What is the molecular formula of (-)-linalool? Which of the following best describes (-)-linalool? Which of the following best describes (-)-linalool? Which of the following best describes (-)-linalool? What functional groups are present in (-)-linalool? 	5w. 8
What is the molecular formula of (-)-linalool? Which of the following best describes (-)-linalool? achiral compound, racemic mixture, (R)-enantiomer, or (S)-enantiomer What functional groups are present in (-)-linalool?	
Which of the following best describes (–)-linalool? achiral compound, racemic mixture, (R)-enantiomer, or (S)-enantiomer What functional groups are present in (–)-linalool?	
Which of the following best describes (–)-linalool? achiral compound, racemic mixture, (R)-enantiomer, or (S)-enantiomer What functional groups are present in (–)-linalool?	
achiral compound, racemic mixture, (<i>R</i>)-enantiomer, or (<i>S</i>)-enantiomer What functional groups are present in (–)-linalool?	
achiral compound, racemic mixture, (<i>R</i>)-enantiomer, or (<i>S</i>)-enantiomer What functional groups are present in (–)-linalool?	
(<i>R</i>)-enantiomer, or (<i>S</i>)-enantiomer What functional groups are present in (–)-linalool?	
Is it possible to obtain (Z) and (E) isomers of () linglool? Give a reason for your	
Is it possible to obtain (Z) and (E) isomers of $(-)$ -linalool? Give a reason for your answer.	
Give the constitutional formula of the organic product formed from (–)-linalool in	
each of the following reactions. NB: If there is no reaction, write "no reaction".	
Reagents / Conditions Constitutional Formula of Product	
Br_2 (in CCl_4 as solvent)	
Dr ₂ (in elei4 dis solvent)	
$Na_2Cr_2O_7$ in aqueous acid	
Na, then CH ₃ Br	
H ₂ / Pd-C catalyst	
	I

Page Total:

Marks • Show clearly the reagents you would use to carry out the following chemical 3 conversion. More than one step is required. Give the structure of any intermediate compounds formed. 0 O´ Ο • Convert the following structure into a Fischer projection. 3 OH Η Ōн 0

Page Total:

CHEM1002 – FUNDAMENTALS OF CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples				
Fraction	Prefix	Symbol Multiple Prefix		Prefix	Symbol			
10^{-3}	milli	m	10^{3}	kilo	k			
10^{-6}	micro	μ	10^{6}	mega	Μ			
10^{-9}	nano	n	10^{9}	giga	G			
10^{-12}	pico	р	10^{12}	tera	Т			

CHEM1002 – FUNDAMENTALS OF CHEMISTRY 1B

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	0 (by definition) -0.04
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.13
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.04 -0.13 -0.14
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.04 -0.13 -0.14 -0.24
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.04 -0.13 -0.14 -0.24 -0.40
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \\ -2.71 \end{array}$

CHEM1002 – FUNDAMENTA	LS OF CHEMISTRY 1B
-----------------------	--------------------

Useful formulas

Quantum Chemistry	<i>Jormulas</i> Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_w = pK_a + pK_b = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{l_2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Mathematics	Thermodynamics & Equilibrium
If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln x = 2.303 \log x$	$\Delta G^{\circ} = -RT \ln K$
Area of circle = πr^2	$\Delta_{\rm univ}S^\circ = R\ln K$
Surface area of sphere = $4\pi r^2$	$\ln \frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$
Volume of sphere = $4/3 \pi r^3$	$\lim \frac{1}{K_1} - \frac{1}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$
Miscellaneous	Colligative Properties & Solutions
$A = -\log \frac{I}{I_0}$	$\Pi = cRT$
	$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$
$A = \varepsilon c l$	c = kp
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	$\Delta T_{\rm f} = K_{\rm f} m$
$-4\pi\varepsilon_0 r^{-1}$	$\Delta T_{\rm b} = K_{\rm b} m$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																	2 нешим Не 4.003
3 LITHIUM	4 beryllium]										5 boron	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li 6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11 водим	12 MAGNESIUM												14 silicon	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 ARGON
Na 22.99	Mg 24.31											Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19 POTASSIUM	24.31 20 CALCIUM	21 scandium	22 TITANIUM	23 vanadium	24	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 ZINC	20.98 31 GALLIUM	32 GERMANIUM	30.97 33 ARSENIC	32.07 34 selenium	35.45 35 BROMINE	39.95 36 KRYPTON
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Generation 72.59	AS 74.92	Selevion 78.96	Br 79.90	K r 83.80
37 RUBIDIUM	38 strontium	39 YTTRIUM	40 ZIRCONIUM	41	42 MOLYBDENUM	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	46 PALLADIUM	47 SILVER	48 CADMIUM	49 INDIUM	50 TIN	51	52 TELLURIUM	53 IODINE	54 xenon
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc [98.91]	Ru 101.07	Rh 102.91	Pd 106.4	Ag 107.87	Cd	In	Sn 118.69	Sb 121.75	Te 127.60	I 126.90	Xe 131.30
55 CAESIUM	56 BARIUM	57-71		73	74 TUNGSTEN	75 RHENIUM	76 05MIUM	77 IRIDIUM	78 PLATINUM	79 _{GOLD}	80 MERCURY	81 THALLIUM	82	83 візмитн	84 POLONIUM	85 ASTATINE	86 RADON
Cs 132.91	Ba 137.34		Hf 178.49	Та	W 183.85	Re 186.2	Os 190.2	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl	Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn [222.0]
87 FRANCIUM	88 RADIUM	89-10		105	105.85 106 SEABORGIUM	100.2 107 воняши	190.2 108 наssium	192.22 109 MEITNERIUM	193.09 110 darmstadtium	190.97 111 ROENTGENIUM	112 COPERNICI		114 FLEROVIUM	208.98	116	[210.0]	[222.0]
Fr [223.0]	Ra [226.0]		Rf [263]	Db [268]	Sg [271]	Bh [274]	Hs [270]	METINENT [278]	Ds [281]	Rg [281]	[285]		Fl [289]		Lv [293]		
	5	7	50	50	60	61	()	(2)		1		66	67	69	(0)	70	71
LANTHANO		IANUM	58 CERIUM	59 praseodymium Dm	60 NEODYMIUM	61 PROMETHIUM	62 samarium	63 Europium		NIUM TEI	55 вим	66 Dysprosium	67	68 Erbium	69 THULIUM	70 ytterbium Vb	71
	L 138		Ce 140.12	Pr 140.91	Nd 144.24	Pm [144.9]	Sm 150.4	Eu 151.90	6 157.		Г b 8.93	Dy 162.50	Ho 164.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.97
ACTINOID	S ACTE		90 THORIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 M CURI		97 ELLIUM	98 ALIFORNIUM	99 EINSTEINIUM	100 fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
ACTINUID	S A	c	Th 232.04	Pa [231.0]	U 238.03	Np [237.0]	Pu [239.1]	Am [243.1	Cr	n I	Bk 7.1]	Cf [252.1]	Es [252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1]

PERIODIC TABLE OF THE ELEMENTS

2202(b)